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ON THE STRUCTURE OF QUASITRANSVERSE ELASTIC SHOCK WAVES* 

A.G. KULIKOVSKII and E-1. SVESBNIKOVA 

The structure of quasitransverse shock waves in a slightly anisotropic 
medium in the presence of dissipation due to viscosity is investigated. 
The existence of a shock structure "responsible" for ambiguity of the 
solution of a selfsimilar problem about waves excited in a half-space is 
demonstrated. The question of the existence of a structure for the 
remaining quasitransverse shock waves is discussed. 

It is shown in the analysis of gas dynamics /lf and certain other /Z-5/ problems that 
selection of the discontinuities that should be utilized to construct solutions should not be 
constrained, in many cases, by just conditions for a non-decrease in entropy and by evolution- 
arity conditions. Confirmation of the requirement often utilized for the existence of the 
structure of a discontinuity /l, 3, 4, 5/ is especially important and interesting in cases 
when ambiguity of the solution of problems occurs, as in /l-4/ since it assists in selecting 
the unique solution that can actually be realized. 

Ambiguity of the solution for certain ranges of the problem parameters was detected /6, 
7/ when constructing solutions of selfsimilar problems in a prestressed or generally weakly 
anisotropic elastic medium for given initial strains and strains different from the initial 
on the half-space boundary. Quasitransverse shock waves that satisfy the condition of a non- 
decrease in entropy and the evolutionarity conditions were utilized in constructing the 
solutions. It can be suspected that , as in /l-4/, the ambiguity of the solution of self- 
similar problems is a result of the fact that not all the shock waves mentioned possess a 
structure, i.e., a continuous solution of a certain more-complete system of equations taking 
account of the dissipative processes proceeding in a narrow zone corresponding to the dis- 
continuity in the solution of the original equations. 

We will make a general remark here concerning the further content of the research where 
(as in /l-4/) only a stationary shock wave structure is examined. In cases when there is no 
stationary structure and the appropriate discontinuity necessarily occurs in the solution of 
the problem, a non-stationary structure is apparently realized. A well-known example of this 
kind is the hydraulic jump whose structure is turbulent. In those cases, when there are several 
solutions of the problems, preference should obviously be given to solutions containing dis- 
continuities possessing a stationary structure (as is done in /l-5/1. From this viewpoint, 
shocks encountered in the solution only in the case of ambiguity , when tere is a competing 
solution not containing a shock of this kind, are of greatest interest for investigating the 
stationary structure. 

The structure of quasitransverse shocks for which the necessary conditions for existence 
(evolutionarity and non-decrease of the entropy) are satisfied /9, 9/, is investigated below. 
Terms taking account of the additional stresses caused by viscosity are added as a dissipative 
mechanism to the dynamical elasticity theory equations. This is the simplest of the dis- 
sipative mechanisms used in the theory of a solid deformable body and ensures continuity of 
the solutions. It can be hoped that if ambiguity of the solution of the selfsimilar problem 
is associated with the absence of a structure for part of the discontinuities, then this should 
already have been detected in this model. 

1. we consider the motion in the form of plane waves parallel to a certain plane which 
we select as the coordinate plane zga of a Lagrange coordinate system zl,zz,sS = x. The qua%'i- 
tities zl,s2,z correspond to rectangular Cartesian coordinates in the non-deformed state of 
the medium. Initial deformation of the medium, if it exists, is considered homogeneous: 
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e*j* = const. The components sit, sgz. ~1% in the wave under consideration do not change. We 
will describe the change in the deformed state in the wave by the functions &C&+x = ui (2, t), 
where U:i are displacement vector components. The system of equations of a viscoelastic medium 
can here by written in the form 

Here p, is the density of the medium in the undeformed state, vi r ilrc,idt are the velocity 
vector components, @ = p,,u (Eijr s) is the eldstiC ptenthd, U and S are the internal energy 
and entropy per unit mass, Tij is Green's finite strain tensor , and V is the coefficient of 
kinematic viscosity. Not written down here is the energy equation which enables us to find 
the change in the entropy S in the flow. For low amplitude waves this change is small and 
exerts no influence on the dynamic equations (1.1) /&lo/. 

If non-linearity and anisotropy effects are small, by using the third and sixth equations 
of (l-l), it is possible to express u 3 and va approximately in terms of urand u, for a quasi- 
transverse wave and to reduce system (1.1) to the form /11/ (see /12/ also, where an analogous 
operation was carried out for Y =0 for simple waves in an isotropic body) 

Here F = F(u,, ZQ) is a function expressed in terms of Q)(ur,~r, Q). If the anisotropy 
of the initial state of the medium is due just to initial strains while the mediumisisotropic 
in the undeformed state and its elastic potential can be taken in the form of the expansion 
/12/ 

the function F(u,, us) has the form /lo/ 

(1.4) 

As follows from (1.4), the quantity gisthe single parameter which introduces the 
anisotropy caused by preliminary strain into the solution. As is shown in /lo/, in the case 
of small anisotropy of a general kind, the function F will be determined as before by the 
equality (1.4) but with other g,," and g,,". 

2. Let us investigate the structure of the quasitransverse discontinuities. Let W be 
the velocity of the discontinuity. We will seek solutions of system (1.2) of the form ua = 
II, (g), V, = V, (Q, 5 = -x + Wt, a = 1, 2 such that u, will tend to constant values as g-f&=. 

AS v-0 these solutions evidently go over into discontinuities in whi$h the change in the 
quantities agrees with the change in the quantities in the corresponding quasitransverse 
shock /lo/. The functions us(E) and v-(E) should satisfy the equations 

The function V, can be eliminated from the system while the equations are integrated 
once with respect to E. Using the fact that h,, are the second derivatives of Ftheequations 
can be reduced to the form 

povW-$+, c&=1,2 
a 

(2.1) 

q = “2 (‘Owz - II) (Uz2 + U2*) - F f A,u, + A+, 
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The constants of integration A, are the moments flux in the direction of the axes 4 
and can be determined from the conditions for E= --JO, i.e., 
ua = Uz, fduJd$), = 0. 

in front of the shock a1 =ul, 
Note that (2.1) denotes that the integral curves are orthogonal to the 

lines Q = const. By virtue of (2.1) 

We note that the viscosity was taken as a scalar in writing (1.2). For anisotropic 
viscosity the viscous term in this and subsequent equations will change form, where vau,iax 
and vdu~~d~ in (2 .l) is replaced by v,&&/ax and v,gdugidb with positive-definite matrices 
VaB. For an aribtrary matrix v-6 the integral curves of the new Eqs. (2.1) can make an 
arbitrary angle with the lines g = const but the inequality dqJdE>O is conserved. 

Using the explicit form of the function F(u,, u.J we obtain 

povw +f- = [pow* - a -t_ -+ @1z + u!z2) + R]U, -t 4 = L (Ul’ u3 

povw .+ = [pawa-- -t+ (u12 + u*Y -g]u, Jr A,=M(u,.lL,) 
A, = - U, (pow*- a + V&P + g) 
A, = -4, (p,W" - a +- "l,xR" - g), I?* = U,z + U,2 

(2.2) 

For the problem of structure to have a solution, integral curves connecting the point 
A (U,, U,) representing the state in front of the discontinuity (E = -co) with the point 

%I u,depicting the state behind the shock (5 = +-) in which (d&d& = 0 should exist 
for system (2.2). Consequently, we first find the stationary points of the system (2.1) where 
du,ldE = 0. One of them corresponds to the state in front of the shock, the rest correspond 
to a possible state behind the shock for a given value of W, since they correspond to the 
same momentum fluxes in the direction of the rland x2 axes. On the lines where one of the 
equalities M(z+. ue) = 0, L (u,, us) = 0 (isoclinic) is satisfied, the tangents to the integral 
curves are parallel to the uI and ug axes, respectively. Investigation of the shape of these 
curves shows thatfora fixed state in front of the discontinuity, the isoclinic du,idE = 0 

can consist of one or two branches intersecting the ua axis at a right angle and symmetrical 
to it, depending on the magnitude of the shock velocity W. 

Represented in Fig.1 is one of the possible locations of the isoclinic du,ldE = 0. 

Depending on the quantity W, the oval and the unclosed branch can change places in the ex- 
pressions for M and L. There may generally be no oval. Intersection of the lines L = 0 and 
M =g yields the location of the singular points of (2.3), i.e., the stationary points of 
system (2.2). 

For a given state on one side of the discontinuity u,= Ur, ug = Ua and arbitrary W all 
the possible states on the other side of the discontinuity had been found earlier /9/ in the 
form of a shock adiabatic that is displayed by the curve in the z8ruz plane (Fig.Sa). The 
dependence of W on points of the adiabatic (Fig.2bf indicates the correspondence between the 
value of W andthestate behind the shock (theparameter tp in Fig.Zb is a certain coordinate 
thatchangesmonotonically along the shock adiabatic). The behaviour of the shock depends 
very much on the sign of the elastic constant x of the medium. To be specific, x>O is 
taken in all the later discussions. The quantities ce- (a = 1, 2) noted on the W axis in 

Fig.Zb are the characteristic velocities of the slow and fast quasitransverse waves /12/ in 
the sate in front of the shock, i.e., for L~Q = U, 

Fig.1 Fig.2 

The heavy lines in Fig.2 mark those sections of the adiabatic and the velocity graph 
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that correspond to the evolutionary shock. Only for these values of the shock velocity W 
must the discontinuity structure be investigated , since shocks are known not to be able to 
exist for non-evolutionary sections. 

The discontinuities for whichW,< W< WE IFig.Zb) areofparticular interest. The 
evolutionary shocks satisfying this condition are fastandthe statebehindthemis represented 
by paints of the segment QEof the shock adiabatic (Figs.Za and b). A condition for the 
existence of the segment QE is the inequality WJ< WE, which is satisfied if the quantities 
U~l(~ln~la emerge from a certain bounded range of values /Q/. As is shown in )6/, the self- 
similar problem can have two solutions under these same conditions, where one of #em contains 
a shock corresponding to one of the points of the segment QE. Moreover, this solution can 
contain a slow shock. The second solution contains discontinuities corresponding to the 
points J and K of the shock adiabatic and can also contain a slow shock. All. the discon- 
tinuities listed, except those that correspond to points of the segment QEalso enter into 
the other solutions when these solutions are unique, and consquently, as has already been 
mentioned above, their existence can hardly be subject to doubt. The absence of a stationary 
structure for these waves should have denoted that a non-stationary structure exists, 

Fig.3 

Fig.4 Fig.5 

Knowledge of the shock adiabatic and graphs for W assists in establishing the location 
of the singular points of (2.3). Selecting a certain value W= eonst, we thereby draw lines 
NN', nn', . . . in Fig.Zb that all intersect the velocity graphs at the points Bt. There can 
be two such points (B1, B, on the line nn’), four (B,,B,,Bs,B, on the line NN') or none. 
States behind the shock denoted by the same 1ettersBicorrespond to the points mentioned on 
the shock adiabatic (Fig-Pa). Together with the point A these points will indeedbestationary 
points of system (2.2) for a given value of W. In order to know which shock transitions 
from the initial. state are possible, it is necessary to indicate those among the singular 
points Bi (if they exist) at which integral curves departing from the point A will arrive 
as 5 grows. To do this it is necessary to clarify the kinds of singular points A,B, and 
to investigate the field of directions {L, M). 

The curves L = 0, M = 0 which divide the u1u2 plane into domains with different slopes 
of the vector {L,M} for the case when ?VJ< W<WE which corresponds to the location of 
the points B, and &in Figs.2a and b, are displayed by dashes in Fig.3a. The qualitative 
pattern of the integral curves is shown in Fig.3a by the solid lines. The point A is a node 
with emerging integral curves, point B,isanode with entering integral curves, while point B, 
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belonging to the segment QEis a saddle. The transition A --+ B, corresponds to a non-evol- 
utionaryshockwhilethetransition A-+BB is a fast shock. It is easy to conceive that two 
integral curves going from A to B, exist. Using the idea of /13, 14/, we will show that 
these solutions will exist even for any positive-definite matrix v,: since the type of 
singular points does not change when going from v&b to vab and two rays of the separatrix 
of the point B, going towards decreasing q should arrive at the point A, since there is a 
single minimum of the function q at this point and q increases with distance from the origin. 

In the case c,-< W< W,, the singular points B,,B,, B,, 19, in Fig.2b lie on the line 
NN’. Their location in the uluz plane is shown in Fig.3b. The discontinuities correspond- 
ing to the transitions A-+& and A -) B, will be evolutionary, Now there are to minima 
of the function q in the ztlsz plane, at the points A and Bar and two saddle points B,and B,. 

It always turns out that q(B,)< q(B,). Here (and for any matrix vatr) the existence of an' 
integral curve going from the point A to the point B3 can be ensured. Indeed, let us examine 
the line Q (~1, ~2) = C. For values of C slightly exceeding q(d) ,this line is closed and 
encloses the point A. An integral curve leaving A passes through each point of it. As C 
increases, the surface q = C will pass throughthepoint R,, which ensures the existence of 
the solution under consideration. 

The existence of an integral curve going from point A to point B, depends on the behaviour 
ofthe separatrix emerging from the point B, (saddle point). The separatrix mentioned separates 
the integral curves emerging from the nodes A and BI, If it enters the point B,,as is shown 
in Fig.3b, then the points A and B, are connected by an integral curve. Otherwise (Fig.4), 
the stationary shock structure corresponding to the points B, (these are fast waves belonging 
to the segment KQ of the shock adiabatic) does not exist. 

4 (A), 

The behaviour of the separatrix is determined by the matrix v,~. Since 4 VA) > q (B3) > 
it is always possible to find va3 such that the integral curve from A to B, will not 

exist, and for which this integral curve will exist. Naturally the scalar, i.e., isotropic, 
viscosity and the case of slightly anisotropic viscosity are of greatest interest. The 
structure of all evolutionary shocks exists for these cases. 

Patterns of the level lines q(u,,u,)= con& were computed on a computer for all possible 
values of the parameters. It is seen from a typical pattern fFig.5) that for the separatrix 
fromthepoint B, not to fall at the point B,it should make a very small angle with the lines 
q = const. 

The case W, < W < c; differs from that considered above in that the points A and B, 
in Figs.3b and 4 and 5 change places, where computations on a computer confirm that the 
structure of a slow shock wave exists for a scalar, or slightly different from a scalar, 
viscosity. In the case c;< W< W, the existence of a slow shock structure is proved 
rigorously for any anisotropic viscosity. A stationary structure for fast shock waves 
corresponding to the segment AJ in Figs.2a and b exists in exactly the same way. 

Therefore, for isotropic viscosity as in (2.1) and in the case when the viscosity is 
slightly anisotropic, .the existence of a stationary structure is confirmed for all quasi- 
transverse shock waves by computer calculations. For shock waves *responsible" for the 
ambiguity of the solution of a selfsimilar problem, for slow shock waves for c,-< W< WE 
and fast shock waves corresponding to the section AJ of the shock adiabatic, the existence 
of a stationary structure is proved rigorously for any anisotropic viscosity. 

An analogous investigation for media with x<O shows that at least fox slow shock waves 
occurring in the composition of one of the solutions of the selfsimilar problem in the non- 
single-valued domain and not taking part in any solutions of this problem for other domains, 
a stationary structure exists. 
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A METHOD OF INVESTIGATING WEAKLY NON-LINEAR INTERACTION 
BETWEEN ONE-DIMENSIONAL WAVES* 

A.V. KRYLOV 

A method of constructing asymptotic approximations of wide classes of 
solutions of weakly non-linear systems is proposed based on the averaging 
scheme developed in /l-3/.**(**See also: Krylov A.V. and Shtaras A.L. 
Internal averaging of multidimensional weakly non-linear systems along 
characteristics, Dep. in LitNIINTI, 10.11.86, No.1750, 1986). The method 
enables one to obtain the conditions for the asymptotic decay of systems 
described by the Burgers, Korteweg-de Vries and similar scalar equations, 
and also enables one to investigate problems in which this decay does not 
occur. As an example we investigate the propagation of perturbations in 
an elastic non-uniform tube. The interaction between two waves is 
considered and the conditions for resonance are obtained. 

1. Non-linear wave phenomena are usually studied using simplifying assumptions of a 
heuristic form. Hence, a theoretical justification is necessary as well as an investigating 
of the limit of suitability of the solutions obtained. 

Suppose the solution of the quasilinear system 

uf + A (u) u, = 0, CI = (~1. . . ., u,), A (U) = 11 aij (ul, . . ., u,,) 11 (1.1) 
is close (O( ~<l) to a certain state of equilibrium (U, = con&) 

u == Cl, + EUI (t, J, E) 

We assume that the constantp (con&) are everywhere independent of 
and j take the values 1, 2,...,n. 

If problem (l.l), '(i.2) is hyperbolic C/4/, p.231, then by making 
RU,, R = (I rij 11, det R #O it can be reduced to the form 

l/t + Av, = - ERA, [WV] R-‘V, + D(E) 

A z diag (h,, . . ., A,} == RA (U,) R-’ 

The initial condition 

(1.2) 
E; the subscripts i 

the replacement i = 

(1.3) 
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